Exercises for Differential calculus in several variables. Bachelor Degree Biomedical Engineering

Universidad Carlos III de Madrid. Departamento de Matemáticas

Chapter 3.2 Change of variable

Problem 1. Use a linear transformation to compute the double integral

$$\int_{S} (x-y)^2 \sin^2(x+y) \, dx dy,$$

where S is the parallelogram with vertices $(\pi, 0)$, $(2\pi, \pi)$, $(\pi, 2\pi)$ and $(0, \pi)$.

Solution: $\pi^4/3$.

Problem 2. Consider the map $\left\{ \begin{array}{l} x=u+v \\ y=v-u^2 \end{array} \right.$. Compute:

- i) The Jacobian matrix for the transformation JT(u, v);
- ii) The image S in the xy-plane of the triangle T in the UV-plane of vertices (0,0), (2,0) and (0,2);
- iii) The area of S;
- iv) The integral $\int_{S} (x-y+1)^{-2} dx dy$.

Solution: i) 1 + 2u; iii) 14/3; iv) $2 + (\pi - 6\arctan(5/\sqrt{3}))\sqrt{3}/9$.

Problem 3. Compute the double integral $\int \int_D \log(x^2 + y^2) dx dy$ where D is the region in the first quadrant defined by the curves $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.

Solution: $2\pi (\log 2 - \frac{3}{8})$.

Problem 4. Compute the integral of the function

$$f(x,y) = \frac{y^4}{b^4 \left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right) \left(1 + \frac{x^2}{a^2} + \frac{y^2}{b^2}\right)} + xy^2$$

on the region $D = \left\{ \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1 \right\}$, where a and b are positive constants.

Solution: $3\pi ab(1 - \log 2)/8$.

Problem 5. Compute the integral of the function

$$f(x,y) = \frac{x}{\sqrt{x^2 + y^2}} e^{\sqrt{x^2 + y^2}}$$

on the region $E = \{ x^2 + (y-1)^2 \le 1 \}$ and $H = \{ x^2 + (y-1)^2 \le 1, x \ge 0 \}$.

Solution: $\int_E f = 0$, $\int_H f = 2$.

Problem 6. Compute the integral of the function $h(x,y) = \frac{\sqrt{2y^2 + x^2}}{y}$ on the region $R = \{(x,y) \in \mathbb{R}^2 / x^2 + (y-1)^2 \le 1, \ x \ge 0\}.$

Solution: $\int_R h = 1 + \pi/2$.

Problem 7. Compute the integral $\int_S \frac{x \, dx \, dy}{4x^2 + y^2}$, where S is the region in the first quadrant defined by the lines x = 0, y = 0 and the ellipses $4x^2 + y^2 = 16$, $4x^2 + y^2 = 1$.

Solution: 3/4.

Problem 8. If R is the region defined by the plane z=3 and the cone $z=\sqrt{x^2+y^2}$, compute the integrals:

- i) $\int_{R} \sqrt{x^2 + y^2 + z^2} \, dx dy dz.$
- ii) $\int_R \sqrt{9-x^2-y^2} \, dx dy dz$.
- iii) $\int_{R} z e^{x^2+y^2+z^2} dxdydz$.

Solution: i) $27\pi(2\sqrt{2}-1)/2$; ii) $54\pi-81\pi^2/8$ iii) $\pi(e^9-1)^2/4$.

Problem 9. Compute $\int_W f(x,y,z)\,dxdydz$, where $f(x,y,z)=e^{-(x^2+y^2+z^2)^{3/2}}$ and W is the region below the sphere $x^2+y^2+z^2=9$ and above the cone $z=\sqrt{x^2+y^2}$.

Solution: $\pi(2-\sqrt{2})(1-e^{-27})/3$.